Part Two

A process can be thought of as a program in execution. A process will
need certain resources-—such as CPU time, memory, files, and /0 devices
—to accomplish its tagk. These resources are allocated to the process
either when it is created or while it is exacuting.

A process is the unit of work in most systems. Systerms consist of
a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Although traditionally a process contained cnly a single thread of
control as it ran, most modern operating systems now support processes
that have muttipie threads.

The operating system is responsible for the following activities in
connection with process and thread management: the creation and
deletion of both user and system processes, and the scheduling-of
processes.

3.1

CHAPTER

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system and had access to
all the system’s resources. In contrast, current-day computer systems allow
multiple programs to be loaded into memory and executed concurrently.
This evolution required firmer control and more compartmentalization of the
various programs; and these needs resulted in the notion of a process, which is
a prograin in executior(/\/process is the unit of work in a modern time-sharing

syste

T@more complex the operating system is, the more it is expected to do on
behalf of its users. Although its main concern is the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernelitself. A system therefore consists of a collection of processes: operating-
system processes executing system code and user processes executing user
code. Potentially, all these processes can execute concurrently, with the CPU (or
CPUs) multiplexed among them. By switching the CPU between processes, the
operating system can make the computer more productive.

A question that arises in discussing operating systems involves what to call all
the CPU activities. A batch system executes jobs, whereas a time-shared system
has wuser programs, or tasks. Even on a single-user system such as Microsoft
Windows, a user may be able to run several programs at one time: a word
processor, a web browser, and an e-mail package. Even if the user can execute
only one program at a time, the operating system may need to support its
own internal programmed activities, such as memory management. in many
respects, all these activities are similar, so we call all of them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

79

80

Chapter 3

max
stack

heap

data

“ext

Figure 3.1 Process in memory.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor’s registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
thatis dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize thata program by itself is not a process; a program is a passive
entity, such as a file containing a list of instructions stored on disk (often called
an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (as in prog.exe or a.out.)

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,
several users may be running different copies of the mail program, or the same
user may invoke many copies of the web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. [t is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

34 81

admitted interrupt

terminated\,
-

running

scheduler dispatch

YO or event completion 1O or event wait

waiting

Figure 3.2 Diagram of process state.

New. The process is being created.
Running. Instructions are being executed.

Waiting. The process is waiting for some event to occur (such as an 1/0
completion or reception of a signal).

Ready. The process is waiting to be assigned to a processor.

Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found or all systems, however. Certain operating
systems also more finely delineate process states. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and waiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB)—also called a fask control block. A PCB is shown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

process siate
. process.number
program counter

registers

memory limits
list of apen files

Figure 3.3 Process control block (PCB).

82 Chapter 3

process £, operating system process P,

interrupt or system call

executing J-L /*1

Lsave state into Pcm

idle

[refoad state from PCB,|

iclle interrupt or system call executing

f |_save state into F_?CBt_-;]

——r

idle

[reload state from PCB,
executing M

Figure 3.4 Diagram showing CPU switch from process to process.

Process state. The state may be new, ready, running, waiting, halted, and
50 on.

Program counter. The counter indicates the address of the next instruction
to be executed for this process.

CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4),

CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

Memory-managemeuat information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 8),

Accounting information. This information includes the amount of Cru
and real time used, time Jimits, account numbers, job or process numbers,
and so on,

VO status information. This information includes the list of /0 devices
allocated to the process, a list of open files, and s0 on.

3.2

3.2 b 83

Tn brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processor program, a single thread of instructions is being

~executed. This single thread of control allows the process to perform only one

task at one time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operating
systems have extended the process concept to allow a process to have multiple
threads of execution and thus to perform more than one task at a time. Chapter
4 explores multithreaded processes in detail.

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. The objective of time sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is running. To meet these objectives, the process scheduler selects

queue header PCB, PCB,
ready head +—
queue fail registers * tegisters
™ 'y .
- .
* L
mag head +—=
tape - =
unito .. tal =
o [
P PCB PCB
unitt L tad = S 1 2

disk | head 1
unit ¢ gt o

PCB

terminal head > —=
unit 0 tail A

Figure 3.5 The ready queue and various I/O device queues.

84

Chapter 3

an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than cne running process. If there are more processes, the rest will
have to wait until the CPU is free and can be rescheduled.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which consists
of all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains
pointers to the first and final PCBs in the list. Each PCB includes a pointer field
that points to the next ICB in the ready queue.

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an 1/0 request.
Suppose the process makes an 1/0 request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
170 request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular [;O device is called a
device queue. Each device has its own device queue (Figure 3.5).

A common representation for a discussion of process scheduling is a
queueing diagram, such as that in Figure 3.6. Each rectangular box represents
a queue. Two types of queues are present: the ready queue and a set of device
queues. The circles represent the resources that serve the queues, and the
arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or is dispatched. Once the process is allocated the CPU
and is executing, one of several events could occur:

The process could issue an 1/0 request and then be placed in an 170 queue.

ready queue]r ,@E

J

f]
gy » -
—(4 17O queue ‘__T 11O request —

e’

time slice
expired

,/cr;d\ ™~ fork a

‘@(Eiutes J child

intersupt waitforan |
occurs interrupt

Figure 3.6 Queueing-diagram representation of process scheduling,

3.2 85

The process could create a new subprocess and wait for the subprocess’s
termination.

The pracess could be removed forcibly from the CPU as a result of an
interrupt, and be put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state
to the ready state and is then put back in the ready queue. A process continues
this cvcle until it terminates, at which time it is removed from all queues and
has its I'CB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.)

Often, in a batch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device {typicallv a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an /0 request. Often, the short-term scheduler executes at least onice every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CP'U is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-
arate the creation of one new process and the nest. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem-
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes
leaving the system. Thus, the long-term scheduler may need to be invoked
only when a process leaves the system. Because of the longer interval between
executions, the long-term scheduler can atford to take more time to decide
which process should be selected for execution.

Jt is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either 170 bound or CPU bound. An
1/0-bound process is one that spends more of its time doing 170 than it spends
doing computations. A CPU-bound process, incontrast, generates /0 requests
infrequently, using more of its time doing computations. It is important that the
long-term scheduler select a good process mix of i/0-bound and CPU-bound
processes. 1f all processes are [/0 bound, the ready queue will almost always
be empty, and the short-term scheduler will have little to do. If all processes
are CPU bound, the 1,0 waiting queue will almost always be empty, devices
will go unused, and again the system will be unbalanced. The system with the

86

Chapter 3

swap in partially executed swap out
swapped- it procegses

WI K/!—'CPU | end

7N VO waiticg |
® quaues

Figure 3.7 Addition of medium-term scheduling to the queueing diagram.

best performance will thus have a combination of CPU-bound and 1/0-bound
processes,

On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems such as UNIX and Microsoft Windows
systems often have no long-term scheduler but simply put every new process
in memory for the short-term scheduler. The stability of these systems depends
either on a physical limitation (such as the number of available terminals) or
on the self-adjusting nature of human users. If the performance declines to
unacceptable levels on a multiuser system, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an
additional, intermediate level of scheduling. This medium-term scheduler is
diagrammed in Figure 3.7. The key idea behind a medium-term scheduler is
that sometimes it can be advantageous to remove processes from memory
(and from active contention for the CPU) and thus reduce the degree of
multiprogramming. Later, the process can be reintroduced into memory, and its
execution can be continued where it left off. This scheme is called swapping.
The process is swapped out, and is later swapped in, by the medium-term
scheduler. Swapping may be necessary to improve the process mix or because
a change in memory requirements has overcommitted available memory,
requiring memory to be freed up. Swapping is discussed in Chapter 8.

3.2.3 Context Switch

As mentioned in 1.2.1, interrupts cause the operating system to change a CPU
from its current task and to run a kernel routine. Such operations happen
frequently on general-purpose systems. When an interrupt occurs, the system
needs to save the current context of the process currently running on the
CPU so that it can restore that context when its processing is done, essentially
suspending the process and then resuming it. The context is represented in
the PCB of the process; it includes the value of the CPU registers, the process
state (see Figure 3.2), and memory-management information. Generically, we
perform a state save of the current state of the CPU, be itin kernel or user mode,
and then a state restore to resume operations.

Switching the CPU to another process requires performing a state save
of the current process and a state restore of a different process. This task is
known as a context switch. When a context switch occurs, the kernel saves the
context of the old process in its PCB and loads the saved context of the new

3.3

3.3 87

process scheduled to run. Context-switch time is pure overhead, because the
system does no useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store all registers). Typical speeds are a few milliseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets
of registers. A context switch here simply requires changing the pointer to the
current register set. Of course. if there are more active processes than there are
register sets, the system resorts to copying register data to and from memory,
as before. Also, the more complex the operating system, the more work must
be done during a context switch, As we will see in Chapter 8, advanced
memory-management techniques may require extra ata to be switched with
each context. For instance, the address space of the current process must be
preserved as the space of the next task is prepared for use. How the address
space is preserved, and what amount of work is needed to preserve it, depend
on the memory-management method of the operating system.

The processes in most systems can execute concurrently, and they may
be created and deleted dynamically. Thus, these systems must provide a
mechanism for process creation and termination. In this section, we explore
the mechanisms involved in creating processes and illustrate process creation
on UNIX and Windows systems.

3.3.1 Process Creation

A process may create several new processes, via a create-process system call,
during the course of execution. The creating process is called a parent process,
and the new processes are called the children of that process. Fach of these
new processes may in turn create other processes, forming a tree of procasses.

Most operating systems (including UNIX and the Windows family of
operating systems) identify processes according to a unique process identifier
(or pid), which is typically an integer number. Figure 3.8 illustrates a typical
process tree for the Solaris operating system, showing the name of each process
and its pid. In Solaris, the process at the top of the tree is the sched process,
with pid of 0. The sched process creates several children processes—including
pageout and £sflush. These processes are responsible for managing memory
and file systems. The sched process also creates the init process, which serves
as the root parent process for all user processes. In Figure 3.8, we sce two
children of init—inetd and dtlogin. inetd is responsible for networking
services such as telnet and ftp; dtlogin is the process representing a user
login screen. When a user logs in, dtlogin creates an X-windows session
{Xsession), which in turns creates the sdt _shel process. Below sdt_shel, a
user’s command-line shell —the C-shell or csh—is created. [tis this command-
line interface where the user then invokes various child processes, such as the
1s and cat commands. We also see a csh proces$ with pid of 7778 representing

88

Chapter 3

a user who has logged onto the systemn using telnet. This user has started the
Netscape browser (pid of 7785) and the emacs editor (pid of 8105).

On UNIX, a listing of processes can be obtained using the ps command. For
example, entering the command ps -el will list complete information for ali
processes currently active in the system. It is easy to construct a process tree
similar to what is shown in Figure 3.8 by recursively tracing parent processes
all the way to the init process.

In general, a process will need certain resources (CI'U time, memory, files,
170 devices) to accomplish its task. When a process creates a subprocess, that
subprocess may be able to obtain its resources directly from the operating
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children. Restricting a child process to a subset of the parent’s
resources prevents any process from overloading the system by creating too
many subprocesses.

In addition to the various physical and logical resources that a process
obtains when it is created, initialization data (input) may be passed along by
the parent process to the child process. For example, consider a process whose
function is to display the contents of a file—say, img.jpg—on the screen of a
terminal. When it is created, it will get, as an input from its parent process,
the name of the file inig.jpe, and it will use that file name, open the file, and
write the contents out. It may also get the name of the output device. Some

LT T
4 init \ pageout fsflush
pid=1 ./ pid=2 pid=3
/7-___/<\\
.

T

inetd
pid = 140/
1 e ‘
lelnetdaem% Xsession
Qd = 77?6/ pid = 294

—~——

¢ csh "

VA

/

, Csh
/ K < pid = ‘!40;
—T Te— -

/—w_\‘\. ?
Netscape { emm 7 N
id =8106 —— i

id =77
R ey
cal
pid = 2123 pid = 2536
__‘g

Figure 3.8 A tree of processes on a typical Solaris system,

sdi_shel
pid = 340

33 89

operating systems pass resources to child processes. On such a system, the
new process may get two open files, iy jpy and the terminal device, and may
simply transfer the datum between the two.

When a process creates a new process, two pussibilities exist in terms of
execution:

The parent continues to execute concurrently with its children.

The parent waits until somme or all of its children have terminated.
There are also two possibilities in terms of the address space of the new process:

The child process is a duplicate of the parent process (it has the same
program and data as the parent),

The child process has a new program loaded into 1t

To illustrate these differences, let’s first consider the UNIX operating svstern.
In UNIX, as we've seen, each process is identified by its process identifier,
which is a unique integer. A new process is created by the fork () svstem
call. The new process consists of a copy of the address space of the original
process. This mechanism altows the parent process to communicate easily with

#include «<sys/types. hx=
#include <stdio.h>
#include <unistd.h>

iat main(}

{
pid_t pid;
/* fork a child process */
pid = fork(};
if {pid « 0} {/* error cccurred */
fprintf (stderr, "Fork Failed";;
exit {-1);
} -
else if {(pid == 0} {/* child process */
execlp("/bin/la", "is" NULL} ;
}
else [/* parent process */
/* parent will wait for the child to complete */
walt (NULL) ;
printf("Child Complete"};
exit {0} ;
}
}

Figure 3.9 C program forking a separate process.

90

Chapter 3

its child process. Both processes (the parent and the child) continue execution
at the instruction after the fork (), with one difference: The return code for
the fork () is zero for the new (child) process, whereas the (nonzero} process
identifier of the child is returned to the parent.

Typically, the exec() system call is used after a fork() system call by
one of the two processes to replace the process’s memory space with a new
program. The exec () system call loads a binary file into memory {destroving
the memory image of the program containing the exec() systemn call) and
starts its execution. In this manner, the two processes are able to communicate
and then go their separate ways. The parent can then create morc children; or,
if it has nothing else to do while the child runs, it can issue a wait () system
call to move itself off the ready queue until the termination of the child.

The C program shown in Figure 3.9 illustrates the UNIX swstem calls
previously described. We now have two different processes running a copy
of the same program. The value of pid for the child process is zero; that for
the parent is an integer value greater than zero. The child process overlays
its address space with the UNIX command /bin/1ls (used to get a directory
listing) using the execlp{) system call (execip() is a version of the exec()
system call). The parent waits for the child process to complete with the wait ()
system call. When the child process completes (by either implicitly or explicitty
invoking exit (}} the parent process resumes from the call to wait (), where it
completes using the exit () system call. This is also illustrated in Figure 3.10.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Win32 API using the CreateFrocess () function,
whichissimilar to fork () in thata parent creates a new child process. However,
whereas fork () has the child process inheriting the address space of its parent,
CreateProcess(} requires 'sading a specified program into the address space
of the child process at process creation. Furthermore, whereas fork () is passed
ne parameters, CreateProcess () expects no fewer than ten parameters.

The C program shown in Figure 3.11 illustrates the CreateProcesz()
function, which creates a child process thatloads the application mspaint . exe.
We opt for many of the default values of the ten parameters passed to
CreateProcess(). Readers interested in pursuing the details on process
creation and management in the Win32 APl are encouraged to consult the
bibliographical notes at the end of this chapter.

Two parameters passed to CreateProcess() are instances of the START-
UPINFQ and PROCESS INFORMATION structures, STARTUPINFO specifies many
properties of the new process, such as window size and appearance and han-

parent wait resumes

fork)

-V‘\ -
child exec()) exit()
&J

Figure 3.10 Process creation.

3.3 91

#include <stdic.h>
#include <windows.h>

int main {VOID)

{

STARTUPINFC si;
PROCESS_INFORMATION pi;

// allocate memory
ZeroMemory (&si, sizecf(si));
si.cbhb = sizeof(si);
ZeroMemory {&pil, sizecf(pi));

// create child process
if (ICreateProcess (NULL, // use command line
"CA\WINDOWSY\system32\\mspaint.exe", // command line
NULL, // den‘t inherit process handle

NULL, // don‘t inherit thread handle

FALSE, // disable handle inheritance

0, // no creation flags

NULL, // use parent’s environment block
NULL, // use parent’s existing directory
&si,

&pi))

fprintf (stderr, "Create Process Failed");
return -1;
}
// parent will wait for the child to complete
WaitForSingleCbject {pi.hProcess, INFINITE);
printf ("Child Complete");

// close handles
CloseHandle (pi.hProcess) ;
CloseHandle (pi.hThread) ;

Figure 3.11 Creating a separate process using the Win32 APl

dles to standard input and outpuit files. The PROCESS_ INFORMATION structure
contains a handle and the identifiers to the newly created process and its thread.
We invoke the ZeroMemory () function to allocate memory for each of these
structures before proceeding with CreateProcess ().

The first two parameters passed to CreateProcess () are the application
name ard command line parameters. If the application name is NULL {which
in this case it is), the command line parameter specifies the application to
load. In this instance we are loading the Microsoft Windows mspaint.exe
application. Beyond these two injtial parameters, we use the default parameters
for inheriting process and thread handles as well as specifying no creation flags.
We also use the parent’s existing environment block and starting directory.

Chapter 3

Last. we provide two pointers to the STARTUPMINFO and PROCESS INFORMATION
structures created at the beginning of the program. In Figure 3.9, the parent
process waits tor the child to complete by invoking the wait () system call.
The equivalent ot this in Win32 is waltFor81ngleDbJ ect (7, which is passed a

iandle of the child process—pi . hProcess — that it is waiting for to complete.
Once the chnid process exits, control returns from the WaitForSingleObject ()
fanction in the parent process.

3.3.2 Frocess Termination

A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit () system call. At that point, the
process may rehwrn a status value {typically an integer) to its parent process (via
the wait{) sstem call), All the resources of the process—including physical and
virtual memory, open files, and 110 buffers —are dealiccated by the operating
svstem.

Termination can occur in other circumstances as well. A process can cause
the termination of anather process via an appropriate system call (for example,
TerminateProcess{) in Win32). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, users
could arbitrarily kill each other’s jobs. Note that a parent needs to know the
identities of its children. Thus, when one process creates a new process, the
identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its chlldren for a variety of
reasons, such as these:

The child has exceeded its usage of some of the resources that it has been
altocated. (To determine whether this has eccurred, the parent must have
a mechanism to inspect the state of its children.)

The task assigned to the child is no longer required.

The parent is exiting, and the operating system does not allow a chiid to
continue if its parent terminates.

Some systems, including vMs, do not allew a child to exist if its parept
has terminated. In such svstems, if a process terminates (either normally or
abnermally), then ail its children must also be terminated. This phenom&non
referred to as cascading termination, is normally initiated by the operating
system.

To illustrate process execution and termination, consider that, in UNIX, we
can terminate a process by using the exit () system call; its parent process
may wait for the termination of a child process by using the wait () system
call. The wait () system call returns the process identifier of a terminated child
s0 that the parént can tell which of its possibly many children has terminated.
If the parent terminates, however, all its children have assigned as their new
parent the init process. Thus, the children still have a parent to collect their
status and execution statistics.

3.4

34 ipdvreroooes LA cnanieabivg 923
Interprocess Commumcation

Processes executing concutrently in ‘the operating system may be either
independent processes or cooperating processes. A process is independent
if it cannot affect or be affected by the other processes executing in the systeg.
Any process that does not shate data with any other process is independen@
process 1s cooperating Jf it can affect or be affected by the other process
executing in the syster} Clearly, any process that shares data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows process
<oopetation:

* Information sharing. Since severil users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

+ Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing elements (such as CPUs or 1/0 channels).

» Modularity. We may want to constrict the system in a modular fashion,
‘dividing the system funetions itito separate processes or threads, as we
discussed in Chapter 2. - ‘

. Conveniem_e.iveii an individual uset may work on many tasks at the
same time. For instance, a user may be editing, printing, and compiling in
-parallel.. L :

+ Cooperating processes require aninterprocess communication (IPC) mech-
anism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication; (1) shared memory and
{2) message passing. In the shared-memory model, a region of memory that
is shared by cooperating processes is established. Processes can then exchange

- information by reading and writing data to the shared region. In the message-
- passing model, communication takes place by means of messages exchanged

- ‘between the cooperating processes. The two communications models are

‘contrasted in Figure 3.12. -

Both of the models just discussed are common in operating systems, and
many systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Message
passing is also easier to implement than is shared - memory for intercomputer
communication. Shared memory allows maximum speed and convenience of
communication, as it can be done at memory speeds when within a computer.
Shared memory is faster than message passing, as message-passing systems
are typically implemented using system calls and thus require the more time-
consuming task of kernel intervention. In contrast, in shared-memory systems,
system calls aré required only to establish shared-memory regions. Once shared
memory is established, all accesses are treated as routine memory accesses, and
no assistance from the kernel is required. In the remainder of this section, we

‘explore each of these IPC models in more detail.

94

Chapter3 oo eyt

@) ' (b)

Figure 3.12 Communications modeis. (a) Message passing. (b) Shared memory.

3.4 Shared-Membry Systems
Interprocess communication using shared memory requires communicating

processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-memory
segment. Other processes that wish to communicate using this shared-memory
segment must attach it to their address space. Recall that, normally, the
operating system tries to prevent one process from accessing another process’s
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then exchange information by reading and writing
data in the shared areas. The form of the dataand the location are determined by
these processes and are not under the operating system’s control. The processes
are also responsible for ensuring that they are not writing to the same location
simultaneously. o

To illustrate the concept of cooperating processes, let's consider the
producer~consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code,
which is consumed by an assembler. The assembler, in turn, may produce
ohject modules, which are consumed by the loader. The producer—consumer
problem also provides a useful metaphor for the client-server paradigm. We
generally think of a server as a producer and a client as a consumer. For
example, a web server produces (that is, provides) HTML files and images,
which are consumed (that is, read) by the client web browser requesting the
resource. :

One solution to the producer—consumer problem uses shared memory. To
allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by
the consumer. This buffer will reside in a region of mgmory that is shared by
the producer and consumer processes. A producer can produce one item while
the consumer is consuming another item. The producet and consumer must

34 o e arin 95

be synchronized, so that the cunsumer does not try to consume an item that
has not yet been produced.

Two types of buffers can be used. The unbounded buffer places no practical
limit on the size of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items, The bounded buffer assumes
a fixed buffer size. In this case, the consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Let’s look more closely at how the bounded buffer can be used to enable
processes to share metnory. The following variables reside in a region of
memory shared by the producet and consumer processes:

#define BUFFERSTZE 10

typedef struct {

Jitem;

" item buffer [BUFFER.SIZE};
int in = 0;
int ott = 8;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The vatiable in points to the next ftee position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in == out; the buffer is full when ({in + 1) % BUFFER SIZE) == out.

The code for the producer and constimer processes is shown in Figures 3.13
and 3.14, respectively. The producer process has a local variable nextProduced
in which the new item to be produced is stered. The consuther process has a
local variable nextConsumed In which the item to be consumed ts stored.

This scheme allows at most BUFFER SIZE ~ 1 {tems in the buffer at the same
time. We leave it as an exercise for you to provide a solution where BUFFER SIZE
items can be in the buffer at the same time. In Section 3.9.1, we illustrate the
-POBIX AFI for shared memory. '

One issue this illustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concutrently. In Chapter 6, we discuss how synchronization
among cooperating processes can be implemented effectively in a shared-
memory environment. -

item nextProduced;

while (true) {
/* produce an item in nextProduced */
while ({{in + 1) ¥ BUFFER.SIZE! == out)
; /* do nothing */
bufferfin] = nextProduced;
in = {(in + 1) % BUFFER.SIZE;

Figure 3.13 The producer process.

96

Chapter3 s e
item nextConaumed;

while (true) {
while (in == out) .
; // do nothing

nextConsumed = bufferfioutl;
out = (out + 1) % BUFFER-SIZE; .
/* consume the item in nextConsumed */

Figure 3.14 The consumer pProcess.

3.4.2 Message-Passing Systems

In Section 3.4.1, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
facility. : :

Message passing provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same address space ard
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, a chat program used on the World Wide Web could be designed so
that chat participants communicate with one another by exchanging messages.

A message-passing facility provides at least two operations: send(message)
and receive(message). Messages sent by a process can be of either fixed
or variable size. If only fixed-sized messages can be sent, the system-levei
implementation is straightforward. This restriction, however, makes the task
of programming more difficult. Conversely, variable-sized messages require
a more complex system-level implementation, but the programming task
becomes simpler. This is a common kind of tradeoff seen throughout operating
system design. '

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between -
thetn. This link can be implemented in a variety of ways. We are concerned here
not with the link’s physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 14) but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send () /receive() operations:

Direct or indirect communication
= Synchronous or asynchronous communication

Automatic or explicit buffering

We look at issues related to each of these features next.

K I S S T O TIT 97

3.4.2.1 -Naniing

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send () and receive() primitives are defined as:

* send(P, message)—Send a message to process P.

* receive(Q, message) —Receive amessage from process Q.
A communication link in this scheme has the following properties:

* A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other’s
identity to communicate.

* A link is associated with exactly two processes.
¢ Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A
variant of this scheme employs asymmetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this
scheme, the send () and receive() primitives are defined as follows:

¢ send(P, message)—Send a message to process P.

* receive(id, message) —Receive amessage from any process; the vari-
able id is set to the name of the process with which communication has
taken place.

. The disadvantage in both of these schemes (symmetric and asymmetric)

is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining all other process definitions.
All references to the old identifier must be found, so that they can be modified
to the new identifier. In general, any such hard-coding techniques, where
identifiers must be explicitly stated, are less desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and from which messages can be removed.
Each mailbox has a unique identification. For example, POSIX message queues
use an integer value to identify a mailbox. In this scheme, a process can
communicate with some other process via a number of different mailboxes.
Two processes can communicate only if the processes have a shared mailbox,

" however. The send () and receive(;(primitives are defined as follows:

« send(A, meﬂsage)‘;Segd a message to mailbox A.
¢ receive(A, message) —Receive a message from mailbox A.

98

Chapter3 i f oo

In this scheme, a communication link has the following proPerties:

- " link is established between a pair of processes only lf both members of
the pair have a shared mailbox. .

A link may be associated with more than two processes.

Between each pair of communicating processes, there may be a number of
different links, with each link corresponding to one maiibox.

Now suppose that processes Py, P;, and P, all share mailbox A. Process
P, sends a message to A, while both P; and P; execute a receive() from A
Which process will receive the message sent by P1? The answer depends on
which of the following methods we choose: ‘

Aliow a link to be associated with two processes at most.
Allow at most one process at a time to execute a receive () operation.

Allow the system to select arbitrarily which process will receive the
message (that is, either P, or Py, but not both, will receive the message).
The system also may define an algorithm for selecting which process
will receive the message (that is, round robin where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address

- space of the process), then we distinguish between the owner (who can only

receive messages through this mailbox} and the user (who can only send
messages to the mailbox). Since each mailbox has a unique owner, there can be
no confusion about who should receive a message sent to this mailbox, When a
process that owns a mailbox terminates, the mailbox disappears. Any process
that subsequently sends a message to this mailbox must be notified that the
mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an
existence of its own. It is independent and is not attached to any particular
process. The operating system then must prov:de a mechanism that allows a
process to do the following:

> Create a new mailbox.
- Send and receive messages through the mailbox.

s Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision
could result in multiple receivers for each maitbox,

3.‘ ‘i?i\i§§ IR TR LTI RS SIS EaR R S L NS R 99

3.422 Synchrenization

Communication between processes takes place through calls to send () and
receive() primitives. There are different design options for implementing
- each primitive. Mescage passing may be either blocking or nonblocking—
also known as syachronous and asynchronous.

* Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

* Nnnblukins send. The sending process sends the message and resumes
operation.
* Blocking receive. The receiver blocks until a message is available.

s Nonblocking receive. The receiver retrieves either a valid message or a
null,

Different combinations of send () and receive () are possible. When both
send() and receive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer—consumer problem
becomes trivial when we use blocking send() and receive() statements.
The producer merely invokes the blocking send() call and waits until the

_message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive(), it blocks until a message is available.
. Note that the concepts of synchronous and asynchronous occur frequently
in operating-system /O algorithms, as you will see throughout this text.

3.4.23 Buffering

Whether communication is direct or indirect, messages exchanged by commu-
nicating processes reside in a temporary queue. Basically, such queues can be
implemented in three ways: '

¢ Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

o Bounded capacity. The queue has finite length n; thus, at most # messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without
waiting. The links capacity is finite , however. If the link is full, the sender
must block until space is available in the queue.

+ Unbounded capacity. The queues length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as systems with automatic buffering.

w0

3.5

Chapter3 i ooy

LErE A T D Suatorms RN
In this section, we exploré three différenf IPC systems., We ﬁrst"__-caver the
POSIX API for shared memory and then discuss message pasging in the Mach
operating system. We conclude with Windows XP,~which interestingly uses
shared memory as a mechanism for providing certain types of message passing.

3.5.1 An Example: POSIX Shared Memory =~ "+

Several IPC mechanisms are available for POSIX systems, including shared
memory and message passing. Here, we explore the POSIX “API"for shared
memory. ‘

A process must first create a shared memory segment using the-shmget ()
system call (shmget () is derived from SHared Memory GET). The following
example illustrates the use of shmget (): S e

segment_id = shmget (IPC_PRIVATE, size, S_IRUSR | STWUSR) ;

This first parameter specifies the key (or identifier) of the, shared-memory
segment. If this is set to [PC_PRIVATE, a new shared-memory ségment is created.
The second parameter specifies the size (in bytes) of the' sharéd: memory
segment. Finally, the third parameter identifies the' mode, whith indicates
how the shared-memory segment is to be tised —that is, fot readifig, writing,
or both. By setting the mode to SIRUSR | SIWUSR, we are indicating that the
owner may read or write to the shated-memory ségment. A successful call to
shmget () returns an integer identifier for the shared-méinory segmént. Other
processes that want to use this region of shared memory must specify this
identifier. e o

Processes that wish to access a shared-memory segment must attach it to
their address space using the shmat () (SHared Memory- ATtach) system call.
The call to shmat () expects three parameters as well: The first is the integer
identifier of the shared-memory segment being attached, and the second is
a pointer location in memory indicating where the shared memory will be
attached. If we pass a value of NULL, the operating system selects the location
on the user’s behalf. The third parameter identifies a flag that allows the shared-
memory region to be attached in read-only or read-write mode; by passing a
parameter of 0, we allow both reads and writes to the shared region.

The third parameter identifies a mode flag. If set; the mode flagrallows the

‘shared-memory region to be attached in read-only mode; if set to 0, the flag

allows both reads and writes to the shared region. We attach a region of shared
memory using shmat () as follows: AR

Lo
dar, o

shared memory = {char *) shmat(id, NULL, 0¥
If successful, shmat () returns a pointer to the beginning location in memory
where the shared-memory region has been attached.
Once the region of shared memory is attached to a process’s address space,
the process can access the shared memory as a routine memoty access using
the pointer returned from shmat (). In'this example, shiat () feturtis a pointe-

35 Eavaplos of I Sy 101

to a character string. Thus, we could write to the shared-memory region as
follows:

sprintf (shared memory, "Writing to shared memory");

Other processes sharing this segment would see the updates to the shared-
memory segment. - :

Typically, a process using an existing shared-memory segment first attaches
the shared-memory region to its address space and then accesses (and possibly
updates} the region of shared memory. When a process no longer requires
access to the shared-memory segment, it detaches the segment from its address
space. To detach a region of shared memory, the process can pass the pointer
of the shared-memory region to the shmdt () system call, as follows:

shmdt (shared memory) ;

Finally, a shared-memory segment can be removed from the system with the
shmetl () system call, which is passed the identifier of the shared segment
along with the flag IPC_RMIF.

The program shown in Figure 3.15 illustrates the POSIX shared-memory API
discussed above. This program creates a 4,096-byte shared-memory segment.
Once the region of shared memory is attached, the process writes the message
Hi There! to shared memory. After outputting the contents of the updated
memory, it detaches and removes the shared-memory region. We provide
further exercises using the POSIX shared memory API in the programming
exercises at the end of this chapter.

3.6.2 An Example: Mach

As an example of a message-based operating system, we next consider
the Mach operating system, developed at Carnegie Mellon University. We
introduced Mach in Chapter 2 as part of the Mac OS X operating system. The
Mach kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most communication
in Mach—including most of the system calls and all intertask information—
is carried out by messages. Messages are sent to and received from mailboxes,
called ports in Mach.

.Even system calls are made by messages. When a task is created, two special
mailboxes-—the Kernel mailbox and the Notify mailbox—are also created. The
Kernel mailbox is used by the kernel to communicate with the task. The kernel
sends notification of event occurrences to the Notify port. Only three system
calls are needed for message transfer. The msg_send (). call sends a message

10 a mailbox. A message is received via msg_receive(). Remote procedure
calls (RPCs) are executed via meg_rpc (), which sends a message and waits for

exactly one return message from the sender. In this way, the RPC models a

' typical subroutine procedure cal! but can work between systems—hence the
. term remote.

. The port_allocate() system call creates a"ne'w_:'xialilbox and allocates
;pa;e"fqi- its queue of messages. The maximum size of the message queue
defaults to eight messages. The task that creates the mailbox is that mailbox’s

Chll'lﬂ'3 R I S S

#include <stdio.h> /
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the identifier for the shared memory segment */

int segment. id;=

/* a pointer to the shared memory segment */

char* shared wewmory;

/* the size (in bytes) of the shared memory segment */
const int size = 4096;

/* allocate a shared memory segment */
segment_id = shmget (IPC_.PRIVATE, size, S.IRUSR | S_IWUSR);

/* attach the shared memory segment */
shared memory = {(char *) shmat (segment_id, NULL, 0};

/* write a message to the shared memory segment %/
sprintf (shared.memorv, "Hi therei");

/* now print out the string from shared memory */
printf {"*%s\n", shared memory);

/* now detach the shared memory segment */
shmdt (shared_memory) ;

/* now remove the shared memory segment */
shmctl (segment . id, IPC.RMID, NULL};

return 0;

Figure 3.15 C program iftustrating POSIX shared-memory API.

owner. The owner is also allowed to receive from the mailbox. Only one task
at a time can either own or receive from a mailbox, but these rights can be sent
to other tasks if desired.

The mailbox has an initially empty queue of messages. As messages are
sent to the mailbox, the messages are copiéd into the mailbox, All messages
have the same priority. Mach guarantees that multiple messages from the same
‘sender are queued in first-in, first-out (FIFO) order but does not guarantee an
absolute ordering. For instance, messages from two senders may be queued in
any order.

The messages themselves consist of a fixed-length header followed by a
variable-length data portion. The header indicates the length of the message
and includes two mailbox names. One mailbox name is the mailbox to which
the message is being sent. Commonly, the sending thread expects a reply; so

A5 mpres Lr PO Sy 103

the mailbox name of the sender is passed on to the receiving task, which can
use it as a “return address.”

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in the
message is important, since objects defined by the operating system-—such as
ownership or receive access rights, task states, and memory segments—may
be sent in messages.

The send and receive operations themselves are flexible. For instance, when
a message is sent to a mailbox, the mailbox may be full. If the mailbox is not
full, the message is copied to the mailbox, and the sending thread continues. If
the mailbox is full, the sending thread has four options:

I Wait indefi_nitely until there is room in the mailbox.
1. Wait at most # milliseconds,
Do not wait at all but rather return immediately.

4. Temporarily cache a message. One message can be given to the operating
system to keep, even though the maitbox to which it is being sent is full.
When the message can be put in the mailbox, a message is sent back to
the sender; only one such message to a full mailbox can be pending at
any time for a given sending thread.

The final option is meant for server tasks, such as a line-printer driver. After
finishing a request, such tasks may need to send a one-time reply to the task
that had requested service; but they must also continue with other service
requests, even if the reply mailbox for a client is full.

The receive operation must specify the mailbox or mailbox set from whicha
message is to be received. A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for the
purposes of the task. Threads in a task can receive only from a mailbox or
mailbox set for which the task has recejve access. A port_status{) system
call returns the number of messages in a given maitbox. The receive operation
attempts to receive from (1) any mailbox in a mailbox set or (2) a specific
(named) mailbox. If no message is waiting to be received, the receiving thread
can either wait at most # milliseconds or not wait at all.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 14 through 16, but Mach is also suitable for single-
processor systems, as evidenced by its inclusion in the Mac OS X system. The
major problem with message systems has generally been poor performance
caused by double copying of messages; the message is copied first from
the sender to the mailbox and then from the mailbox to the receiver. The
Mach message system attempts to avoid double-copy operations by using
virtual-memory-management techniques (Chapter 9). Essentially, Mach maps
the address space containing the sender’s message into the receiver’s address
space. The message itself is never actually copied. This message-management
technique provides a large performance boost but works for only intrasystem
messages. The Mach operating system is discussed in an extra chapter posted

© on our website. :

104

Chapter3 oot ros oo

3.5.3 An Example: Windows XP

The Windows XP operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed
to implement new featurés. Windows XP provides support for multiple
operating environments, or- subsystems, with which application programs
communicate via a message-passing mechanism. The application programs
can be considered clients of the Windows XP subsystem server.

The message-passing facility in Windows XP is called the local procedure-
call (LPC) facility. The LPC in Windows XP communicates between two
processes on the same machinie, It is similar to the standard RPC mechanism that
is widely used, but it is optimized for and specific to Windows XP. Like Mach,
Windows XP uses a port object to estabiish and maintain a connection between
two processes. Every client that calls a subsystem needs a communication
channel, which is provided by a port object and is never inherited. Windows
XP uses two types of ports: connection ports and communication ports. They
are really the same but are given different names according to how they are
used. Connection ports are named objects and are visible to all:processes; they
give applications a way to set up communication chanriels (Chapter 22). The
communication works as follows: e

¢ The client opens a handle to the subsystem"s connection port object.
v The client sends a connection request.

¢ Theserver creates two private communication ports and returns the handle
to one of them to the client. o '

* The client and server use the corresponding port handie to send messages
or callbacks and to listen for replies. '

Windows XP uses two types of message-passing techniques over a port that
the client specifies when it establishes the channel. The simplest, which is used
for small messages, uses the port’s message queue as intermediate storage and
copies the message from one process to the other. Under this method, messages
of up to 256 bytes can be sent. . : :

If a client needs to send a larger message, it passes the message through
a section object, which sets up a region of shared memory. The client has to
decide when it sets up the channel whether or not it will need to send a large
message. If the client determines that it does want to send large messages, it
asks for a section object to be created. Similarly, if the server decides that replies
will be large, it creates a section object. So that the section object can be used,
a small message is sent that contains a pointer and size information about the
section object. This method is more complicated than the first method, but it
avoids data copying. In both cases, a callback mechanism can be used when
either the client or the server cannot respond immediately to.a request. The
callback mechanism allows them to perform asynchronous message handling.
The structure of local procedure calls in Windows XP is shown in Figure 3.16.

It is important to note that the LPC facility in Windows XP is not part of
the Win32 API and hence is not visible to the application programmer. Rather,
applications using the Win32 API invoke standard remote procedure calls.
When the RPC is being invoked on a process on the same system, the RPC is

3.6

3.6 oo Sothieks ey 1L R A B TR Lh 4 B - 105

Client) Server
Connection
raquest Connection Handle

Handia Chent
Communication Port

il

Communication Port

Handle

Shared
»{ Section Object |«
{< = 256 bytes)

Figure 3.16 Local proceduns calls in Windows XP.

indirectly handled through a local procedure call. LPCs are also used in a few
other functions that are part of the Win32 APL.

Cormmpnurication in Chent-Server Svstems
2

' S In Sec:t'ion.3.4, we described how processes can communicate using shared

memory and message passing. These techniques can be used for communica-

. Honin client—server systems (Section 1.12.2) as well. In this section, we explore

three other strategies for communication in client—server systems: sockets,
remote pracedure calls (RPCs), and Java’'s remote method invocation {RMI).

3.6,1 Sockets

A socket is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets—one for each process.
A socket is identified by an IF address concatenated with a port number. In
general, sockets use a client-server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as telnet, ftp, and http) listen to

well-known ports (a telnet server listens to port 23, an ftp server listens to

port 21, and a web, or htip, server listens to port 80), All ports below 1024 are
considered well known; we can use them to implement standard services.
When a client process initiates a request for a connection, it is assigned a
port by the host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a web server (which is listening on port 80} at
address 161.25.19.8, host X may be assigned port 1625. The connection will

~ consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
“on the web server. This situation is illustrated in Figure 3.17. The packets
traveling between the hosts are delivered to the appropriate process based on
“the destination port number.

106

Chapter3 ‘'eoorsi-toniop

host X
(146.86.5.20)
™,

socket
{146.88.5.20:1625)

web server
{161.25.19.8)

socket
(161.25.19.8:80)

Figure 3.17 Cormmunication using sockets.

All connections must be unique. Therefore, if another process also on host «
X wished to establish another connection with the same web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will ilustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
in C or C++ should consuit the bibliographical notes at the end of the chapter.

Java provides three different types of sockets. Connection-oriented (FCP)
sockets are implemented with the Socket class. Connectionless (UDP} sockets
use the DatagramSocket class. Finally, the MulticastSocket classis a subclass
of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connechon—onented TCP
sockets. The operation allows clients to request the current date and time from
the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.18. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept) method. The server blocks on the accept {) method
waiting for a client to request a connection. When a connection request is
received, accept () returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes a PrintWriter object that it will use to communicate
with the client. A PrintWriter object allows the server to writé to the socket
using-the routine print{} and println(} methods for output. The server
process sends the date to the client, calling the method printla(). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and cozmectmg
to the port on which the server is listening. We implement such a client in the

B0 o v oo, sy L TR 0 R ST 107

import java.net.*;
import java.io.*;

public class DateServer
{
public static void main(Stringl] args) {
try {
SexverSocket sock = new SexverSocket (6013) ;

// now listen for connecticns
while (true) {
Socket client = sock.accept{);

PrintWriter pout = new
PrintWriter (client.getQutputStream(), true);

// write the Date to the socket
pout.printlnfnew java.util.Date().toString(});

// close the socket and resume
// listening for connections
client.close();
}
}
catch (IOException ioe} {
System.err.println{ioe) ;
}

}
}

Figure 3.18 Date server.

Java program shown in Figure 3.19. The client creates a Socket and requests
a connection with the server at IP address 127.0.0.1 on port 6013. Once the
‘connection is made, the client can read from the socket using normal stream
1/0 statements. After it has received the date from the server, the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the
- loopback. When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an [P address,
an actual host name, such as www.westminstercollege.edu, can be used as well.
Communication using sockets—although common and efficient—is con-
sidered a low-level form of communication between distributed processcs.
Onie reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsections, we look at two higher-level methods of communication: remote
procedure calls (RPCs) and remote method invocation (RMI).

108

Chapter3 iooves Danceps:

import java.net.*;
import java.io.*;

public class DateClient
{
public static void wain(String[} args) {
try {
//make connection to server socket
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream(};
BufferediReader bin = new
BufferedReader {new InputStreamReader{in)):;

// read the date from the socket

String line;

while { (line = bin.readLine()) != null)
System.out.println{line};

// close the socket connection
sock.close();

}

catch (IOException ioce) {
System.err.println(ioce);

}. .

}
}

Figure 3.19 Date client.

3.6.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 3.5.2. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the 1PC mechanism described in
Section 3.4, and it is usually built on top of such a system. Here, however,
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication -
scheme to provide remote service. In contrast to the IPC facility, the messages
exchanged in RPC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RPC daemon listening to
a port on the remote system, and each contains an identifier of the function
to execute and the parameters to pass to that function. The function is then
executed as requested, and any output is sent back to the requester in a separate
message.

A port is simply a number included at the start of a message packet. Whereas
a system normaily has one network address, it can have many ports within
that address to differentiate the many network services it supports. If a remote
process needs a service, it addresses a message to the proper port. For instance,

3.6 - : : 109

if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RPC attached to a port—say, port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RPC message to port 3027 on the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow communication to take place by providing a stub on the client side.
Typically, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RPC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. This stub locates
the port on the server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be transmitted over
a network. The stub then transmits a message to the server using message
passing. A similar stub on the server side receives this message and invokes
the procedure on the server. If necessary, return values are passed back to the
client using the same technique.

One issue that must be dealt with concerns differences in data representa-
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems (known as big-endian) use the high memory address to
store the most significant byte, while other systems (known as little-endian) store
the least significant byte at the high memory address. To resolve differences
like this, many RPC systems define a machine-independent representation of
data. One such representation is known as external data representation (XDR).
On the client side, parameter marshalling involves converting the machine-
dependent data into XDR before they are sent to the server. On the server
side, the XDR data are unmarshalled and converted to the machine-dependent
representation for the server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fail only under extreme circumstances, RPCs can fail, or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most ence. Most tocal
procedure calls have the “exactly once” functionality, but it is more difficult to
implement.

First, consider “at most once”. This semantic can be assured by attaching
a timestamp to each message. The server must keep a history of alt the
timestamps of messages it has already processed or a history large enough
to ensure that repeated messages are detected. Incoming messages that have
a timestamp already in the history are ignored. The client can then send
a message one or more times and be assured that it only executes once.
{Generation of these timestamps is discussed in Section 16.1.)

For “exactly once,” we need to remove the risk that the server never receives
the request. To accomplish this, the server must implement the “at most once”
protocol described above but must also acknowledge to the client that the RPC
call was received and executed. These ACK messages are common throughout
networking. The client must resend each RPC call periodically until it receives
the ACK for that call.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place

110

Chapter 3

during link, load, or execution time (Chapter 8) 5o that a procedure call’s name
is replaced by the memory address of the procedure call. The RPC scheme
requires a similar binding of the client and the server port, but how does a client
know the port numbers on the server? Neither system has full information
about the other because they do not share memory.

Two approaches are common. First, the binding information may be
predetermined, in the form of fixed port addresses. At compile time, an RPC
call has a fixed port number associated with it. Once a program is compiled,
the server cannot change the port number of the requested service. Second,
binding can be done dynamically by a rendezvous mechanism. Typically, an
operating system provides a rendezvous (also called a matchmaker) daemon
on a fixed RPC port. A client then sends a message containing the name of
the RPC to the rendezvous daemon requesting the port address of the RPC it
needs to execute. The port number is returned, and the RPC calls can be sent

client messages - server
gser calls kerng!
10 sendBRPEG
rmessage to....
procegiure X
oo emiade From: client
kemel sonds To: server
message to' .
} . Port: matchmaker
mmm Re: address
find port rufnber for RPC X
oo From: server
kerriel piiess: To: client
port Pin-user::. Port: kernel
RPC masgage Re: APC X
e Port: P
ey WTEEY . From: client
karnel sends To: server
RPC. 7 Port: port P
Hpow . <contents=
L ey From: RPC
kamnel receives Port: P
reply, passes To: client
it gher - Port; kernel
I Y <output>

Figure 3.20 Execution of a remote procedure call (RPC).

3.6 S T U 8

to that port until the process terminates (or the server crashes). This method
requires the extra overhead of the initial request but is more flexible than the
first approach. Figure 3.20 shows a sample interaction.

The RPC scheme is useful in implementing a distributed file system
(Chapter 15). Such a system can be implemented as a set of RPC daemons
and clients. The messages are addressed to the distributed file system portona
server on which a file operation is to take place. The message contains the disk
operation to be performed. The disk operation might be read, write, rename,
delete, or status, corresponding to the usual file-related system calls. The
return message contains any data resulting from that call, which is executed by
the DFS daemon on behalf of the client. For instance, a message might contain
a request to transfer a whole file to a client or be limited to a simple block
request. In the latter case, several such requests may be needed if a whole file
is to be transferred.

3.6.3 Remote Method invocation

Remote method invocation (RMI) is a Java feature similar to RPCs. RMI aliows
a thread to invoke a method on a remote object. Objects are considered remate
if they reside in a different Java virtual machine (J¥M). Therefore, the remote
object may be in a different JVM on the same computer or on a remote host
connected by a network. This situation is illustrated in Figure 3.21.

RMI and RPCs differ in two fundamental ways. First, RPCs support pro-
cedural programming, whereby only remote procedures or functions can be
called. In contrast, RMI is object-based: It supports invocation of methods on
remote objects. Second, the parameters to remote procedures are ordinary data
structures in RPC; with RML, it is possible to pass objects as parameters to remote
methods. By allowing a Java program to invoke methods on remote objects,
RMI makes it possible for users to develop Java applications that are distributed
across a network.

To make remote methods transparent to both the client and the server,
RMI implements the remote object using stubs and skeletons. A stub is a
proxy for the remote object; it resides with the client. When a client invokes a
remote method, the stub for the remote object is called. This client-side stub
is responsible for creating a parcel consisting of the name of the method to be
invoked on the server and the marshalled parameters for the method. The stub
then sends this parcel to the server, where the skeleton for the remote object
receives it. The skeleton is responsible for unmarshalling the parameters and

JVM

Figure 3.21 Remote method invocation.

112 Chapter 3

client remote object

val = server.someMethod{A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

| stub‘ ;}

| A, B, someMethod. : |

|__boolean return vajue |

Figure 3.22 Marshalling parameters.

invoking the desired method on the server. The skeleton then marshals the
return value (or exception, if any) into a parcel and returns this parcel to the
- client. The stub unmarshals the return value and passes it to the client.

Lets lock more closely at how this process works. Assume that a client
wishes to invoke a method on a remote object server with a sighature
someMethod(Object, Object) that returns a boolean value. The client
executes the staterment

boolean val = server.someMethod(A, B);

The call to someMethod () with the parameters A and B invokes the stub for the
remote object. The stub marshals into a parcel the parameters A and B and the
name of the method that is to be invoked on the server, then sends this parcel to
the server. The skeleton on the server unmarshals the parameters and invokes
the method someMethod(). The actual implementation of someMethod()
resides on the server. Once the method is completed, the skeleton marshals
the boolean value returned from someMethod{) and sends this value back to
the client. The stub unmarshals this return value and passes it to the client, The
process is shown in Figure 3.22.

Fortunately, the level of abstraction that RMI provides makes the stubs and
skeletons transparent, allowing Java developers to write programs that invoke
distributed methods just as they would invoke local methods. It is crucial,
however, to understand a few rules about the behavior of parameter passing,

If the marshalled parameters are local (or nonremote) objects, they are
passed by copy using a technique known as object serialization. However,
if the parameters are also remote objects, they are passed by reference. In
our example, if A is a local object and B a remote object, 4 is serialized and
passed by copy, and B is passed by reference. This in turn allows the server
to invoke methods on B remotely.

« If local objects are to be passed as parameters to remote objects, they must
implement the interface java.io.Serializable. Many objects in the core

3.7

37 e 113

Java APl implement Serializable, allowing them to be used with RMI.
Obiject serialization allows the staie of an object to be written to a byte
stream.

A process is a program in execution. As a process executes, it changes state. The
state of a process is defined by that process’s current activity. Each process may
be in one of the following states: new, ready, running, waiting, or terminated.
Each process is represented in the operating system by its own process-control
block (PCB).

A process, when it is not executing, is placed in some waiting queue. There
are two major classes of queues in an operating system: 1/0 request queues
and the ready queue. The ready queue contains all the processes that are ready
to execute and are waiting for the CPU. Each process is represented by a PCB,
and the PCBs can be linked together to form a ready queue. Long-term (job)
scheduling is the selection of processes that will be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource-
allacation considerations, especially memory management. Short-term (CPU)
scheduling is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to
create new child processes. The parent may wait for its children to terminate
before proceeding, or the parent and children may execute concurrently. There
are several reasons for allowing concurrent execution: information sharing,
computation speedup, modularity, and convenience.

The processes executing in the operating system may be either independent
processes or cooperating processes. Cooperating processes require an interpro-
cess communication mechanism to communicate with each other. Principally,
communication is achieved through two schemes: shared memory and mes-
sage passing. The shared-memory method requires communicating processes
to share some variables. The processes are expected to exchange information
through the use of these shared variables. In a shared-memory system, the
responsibility for providing communication rests with the application pro-
grammers; the operating system needs to provide only the shared memory.
The message-passing method allows the processes to exchange messages.
The responsibility for providing communication may rest with the operating
system itself. These two schemes are not mutually exclusive and can be used
simultaneously within a singlé operating system.

Communication in client-server systems may use (1) sockets, (2) remote
procedure calls (RI'Cs), or (3) Java’s remote method invocation (RMI). A socket
is defined as an endpoint for communication. A connection between a pair of
applications consists of a pair of sockets, one at each end of the communication
channel. RI'Cs are another form of distributed communication. An RPC occurs
when a process (or thread) calls a procedure on a remote application. RMI is
the Java version of RPCs. RMI allows a thread to inveke a method on a remote
object justas it would invoke a method on a local object. The primary distinction
between RI'Cs and RMI is that in RPCs data are passed to a remote procedure in
the form of an ordinary data structure, whereas RMI allows objects to be passed
in remote method calls.

114

Chapter3 . el

3.3

34

3.5

#include <sys/typss.h>
#include <«<stdio.h>
#include <unistd.h>

int value = 5;

int main{)

{

pid.t pid;
pid = fork({};

if (pid == 0) {/* child process */
value += 15;
}

else if (pid » 0) {/* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /* LINE A */
exit (0);

Figure 3.23 C program.

Describe the differences among short-term, medium-term, and long-
term scheduling.

Describe the actions taken by a kernel to context-switch between
processes.

Using the program shown in Figure 3.23, explain what will be output at
Line A

What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.

Synchronous and asynchronous communication

a
b. Automatic and explicit buffering

o

Send by copy and send by reference

d. Fixed-sized and variable-sized messages

The Fibonacci sequence is the series of numbers 0,1,1.2.3.5.8, ...
Formally, it can be expressed as:

fiby =0

fibp =1

fibn - fibrl—l =+ f‘ibn—2

Write a C program using the fork() system call that that generates the
Fibonacci sequence in the child process. The number of the sequence

3.6

3.7

38

115

will be provided in the command line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child
process. Because the parent and child processes have their own copies
of the data, it will be necessary for the child to output the sequence.
Have the parent invoke the wait () call to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-negative number is passed on the command line.

Repeat the preceding exercise, this time using the CreateProcess) in
the Win32 APL In this instance, you will need to specify a separate
program to be invoked from CreateProcess(). It is this separate
program that will run as a child process outputting the Fibonacci
sequence. Perform necessary error checking to ensure that a non-
negative number is passed on the command line.

Modify the date server shown in Figure 3.18 so that it delivers random
fortunes rather than the current date. Allow the fortunes to contain
multiple lines. The date client shown in Figure 3.19 can be used to read
the multi-line fortunes returned by the fortune server.

In Exercise 3.5, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique allows
the child to write the contents of the Fibonacci sequence to the shared-
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
to the shared memory will be reflected in the parent process as well.

This program will be structured using POSIX shared memory as
described in Section 3.5.1. The program first requires creating the
data structure for the shared-memory segment. This is most easily
accomplished using a struct. This data structure will contain two items:
(1) a fixed-sized array of size MAX_SEQUENCE that will hold the Fibonacci
values; and (2) the size of the sequence the child process is to generate
—sequence_size where sequence size < MAX _SEQUENCE. These items
can be represented in a struct as follows:

#define MAX_SEQUENCE 10

typedef struct {
long fib.seguence [MAX_SEQUENCE] ;
int sequence.size;

}shared data;

The parent process will progress through the following steps:

a. Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is < MAX SEQUENCE.

b. Create a shared-memory segment of size shared data.

¢. Attach the shared-memory segment to its address space.

116

Chapter 3

d. Setthevalue of sequence size to the parameter on the command
line,

e. Fork the child process and invoke the wait () systemn call to wait
for the child to finish.

f. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child’s address space as well. The child
process wilt then write the Fibonacci sequence to shared memory and
finally will detach the segment.

One issue of concemn with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes gencrating the sequence. These two processes
will be synchronized using the wait () system call; the parent process
will invoke wait (), which will cause it to be suspended unti! the chiid
process exits.

3.9 Most UNIX and Linux systems provide the ipcs command. This com-
mand lists the status of various POSIX interprocess communication
mechanisms, including shared-memory segments. Much of the informa-
tion for the command comes from the data structure struct shmid_ds,
which is available in the /usr/include/sys/shm.h file. Some of the
fields of this structure include:

* int shm segsz—size of the shared-memory segment

* short shm nattch—number of attaches to the shared-memory
segment

* struct ipc_perm shm_perm—permission structure of the
shared-memory segment

The struct ipc_perm data structure {which is available in the file
/usr/include/sys/ipc.h) contains the ficlds:

* unsigned short uid-—identifier of the user of the
shared-memory segment

* unsigned short mode-—permission modes

* key t key {on Linux systems, -key)—user-specified key identifier

The permission modes are set according to how the shared-memory
segment s established with the shmget () system call. Permissions are
identified according to the following:

117

“ mode. . meaning —l
0400 Read permission of owner, |
0200 Write permission of owner.

0040 Read permission of group.
0020 Write permission of group.
0004 Read permission of world,
_ 0002 Write permission of warld. |

Permissions can be accessed by using the bitwise AND operator &. For
example, if the statement mode & 0400 cvaluates to true, the permission
mode allows read permission by the owner of the shared-memory
segment.

Shared-memory segments can be identified according to a user-
specified key or according to the integer valve returned from the
sheget () system call, which represents the integer tdentifier of the
shared-memory segment created. The shm._ds structure for a given
integer segment identifier can be obtained with the following shmctl ()
system call:

/* identifier of the shared memory segment*/
int segment id;
shm ds shmbuffer:

shmectl (segment id, IPC_STAT, &shmbuffer):

If successful, shmet1 () returns 0; otherwise, it returns -1.

Write a C program that is passed an identifier for a shared-memory
segment. This program will invoke the shmct1 () function to obtain its
shm_ds structure. Tt will then output the following values of the given
shared-memory segment:

. Segrnént D
* Key

* Mode

* Owner UID
* Size

* Number of attaches

This project consists of modifying a C program which serves as a shell interface
that accepts user commands and then executes cach command in a separate
process. A shell interface provides the user a prompt after which the next
command is entered. The example below illustrates the prompt sh> and the

118

Chapter 3

user’s next command: cat prog.c. This command displays the file prog. c on
the terminal using the UNIX cat command.

-gh> cat prog-c

One technique for implementing a shell interface is to have the parent
process first read what the user enters on the command line (i.e. cat prog.c),
and then create a separate child process that performs the command. Unless
otherwise specified, the parent process waits for the child to exit before
continuing. This is similar in functionality to what is illustrated in Figure
3.10. However, UNIX shells typically also allow the child process to run in the
background —-or concurrently —as well by specifying the ampersand (&} at the
end of the command. By rewriting the above command as

sh> cat prog.c &

the parent and child processes now run concurrently.

The separate child process is created using the fork () system call and the
user’s command is executed by using one of the system calls in the exec()
family (as described in Section 3.3.1).

Simple Shell

A C program that provides the basic operations of a command line shell is
supplied in Figure 3.24. This program is composed of two functions: rain()
and setup (). The setup () function reads in the user’s next command (which
can be up to 80 characters), and then parses it into separate tokens that are used
to fill the argument vector for the command to be executed. (If the command
is to be run in the background, it will end with '&’, and setup() will update
the parameter background so the main() function can act accordingly. This
program is terminated when the user enters <Control><D> and setup() then
invokes exit .

The main() function presents the prompt COMMAND~> and then invokes
setup (), which waits for the user to enter a command. The contents of the
command entered by the user is loaded into the args array. For example, if
the user enters 1s -1 at the COMMAND-> prompt, args [0] becomes equal to
the string is and args[1] is set to the string to ~1. (By “string”, we mean a
null-terminated, C-style string variable.)

This project is organized into two parts: (1) creating the child process and
executing the command in the child, and (2) modifying the shell to allow a
history feature.

Creating a Child Process

The first part of this project is to modify the main() function in Figure 3.24 so
that upon returning from setup(), a child process is forked and executes the
command specified by the user.

As noted above, the setup () function loads the contents of the args array
with the command specified by the user. This args array will be passed to the
execvp() function, which has the following interface:

execvp(char *command, char *params(]);

Foueari g 119

#include <stdio.h>
#include <unistd.h>

#define MAX LINE 80

/** setup() reads in the next command line, separating it into
distinct tckens using whitespace as delimiters.

setup(} modifies the args parameter so that it helds pointers
to the null-terminated strings that are the tokens in the most
recent user command line as well as a NULL peinter, indicating
the end of the argument list, which comes after the 3tring
pointers that have been assigned to args. */

void setup{char inputBuffer[], char *args (], int *background}

{

/** full source code available online */

}

int main(veid)

{

char inputBuffer [MAX LINE]; /+* buffer to hold command entered */
int background; /* equals 1 if a command is followed by "&' */
char *args [MAX.LINE/Z + 1]; /* command line arguments */

while (1} {
background = 0;
printf (" COMMAND->") ;
/* setup() calls exit () when Control-D is entered */
setup (inputBuffer, args, &background) ;

/** the steps are:

(1) fork a child process using fork()

(2} the child process will invoke execvp ()

{3} if background == 1, the parent will wait,

otherwise it will invoke the setup{} function again. */

Figure 3.24 Qutline of simpte shell

where command represents the command to be performed and params stores the
parameters to this command. For this project, the execvp () function should be
invoked as execvp(args [0] ,args) ; be sure to check the value of background
to determine if the parent process is to wait for the child to exit or not.

Creating a History Feature
The next task is to medify the program in Figure 3.24 so that it provides a

history feature that allows the user access up to the 10 most recently entered
commands. These commands will be numbered starting at 1 and will continue

120

Chapter 3

to grow larger even past 10, e.g. if the user has entered 35 commands, the 10
most recent commands should be numbered 26 to 35. This history feature will
be implementing using a few different techniques.

First, the user will be able to list these commands when he/she presses
<Control> <C>, which is the SIGINT signal. UNIX systems use signals to
notify a process that a particular event has occurred. Signals may be either
synchronous or asynchronous, depending upon the source and the reason for
the event being signaled. Once a signal has been gencrated by the occurrence
of a certain event (e.g., division by zero, illegal memory access, user entering
<Control> <C>, etc.), the signal is delivered to a process where it must be
handled. A process receiving a signal may handle it by one of the following
techniques:

[gnoring the signal
using the default signal handler, or

providing a separate signal-handling function.

Signals may be handled by first setting certain fields in the C structure
struct sigaction and then passing this structure to the sigact ion()
function. Signals are defined in the include file /usr/include/sys/signal.h.
For example, the signal STGINT represents the signal for terminating a program
with the control sequence <Control> <C>. The default signal handler for
SIGINT is to terminate the program.

Alternatively, a program may choose to set up its own signal-handling
function by setting the sa handler field in struct sigaction to the name of
the function which will handle the signal and then invoking the sigaction()
function, passing it (1) the signal we are setting up a handler for, and (2) a
pointer to struct sigaction.

In Figure 325 we show a C program that uses the function han-
dle SIGINT() for handling the STGINT signal. This function prints out the
message “Caught Control C”and then invokes the exit () function to ter-
minate the program. (We must use the write () function for performing output
rather than the more common printf () as the former is known as being
signal-safe, indicating it can be called from inside a signal-handling function;
such guarantees cannot be made of printf ().) This program will run in the
while (1) loop until the user enters the sequence <Control> <C>. When this
occurs, the signal-handling function handle STGTNT () is invoked.

The signal-handling function should be declared above main{) and
because control can be transferred to this function at any peint, no parameters
may be passed to it this function. Therefore, any data that it must access in your
program must be declared globally, i.e. at the top of the source file before your
function declarations. Before returning from the signal-handling function, it
should reissue the command prompt.

If the user enters <Control><C>, the signal handler will output a iist of the
most recent 10 commands. With this list, the user can run any of the previous
10 commands by entering T x where ‘x" is the first letter of that command. If
more than one command starts with %', execute the most recent one. Also, the
user should be able to run the most recent command again by just entering 'r".
You can assume that only one space will separate the 'r” and the first letter and

121

#include <signal.h>
#include <unistd.h>
#include <stdio.h>

#define BUFFER.SIZE 50
char buffer [BUFFER SIZE] ;

/* the signal handling function #*/
void handle SIGINT()

{

write (STDOUT FILENO,buffer, strlen (buffer));

exit(0);

}

int main{int arge, char *argvl[])

{
/* set up the signal handler */
struct sigaction handler;
handler.sa handler = handle SIGINT;
sigaction(SIGINT, shandler, NULL} ;

/* generate the output message */
strcpy (buffer, "Caught Contrel C\n");

/* loop until we receive <Controls<Cs */
while (1)

v

return 0;

Figure 3.25 Signal-handling program.

that the letter wili be followed by “\n". Again, 'r" alone will be immediately
followed by the \n characterif it is wished to execute the most recent command.

Any command that is executed in this fashion should be echoed on the
user’s screen and the command is also placed in the history buffer as the next
command. (r x does not go into the history list; the actual command that it
specifies, though, does.)

It the user attempts to use this history facility to run a command and the
command is detected to be errencous, an error message should be given to the
user and the command not entered into the history list, and the execvp()
function should not be called. (It would be nice to know about improperly
formed commands that are handed off to execvp() that appear to look valid
and are not, and not include them in the history as well, but that is beyond the
capabilities of this simple shell program.) You should also modify setup() so
it returns an int signifying if has successfully created a valid args list or not,
and the main() should be updated accordingly.

Chapter 3

Interprocess communication in the RC 4000 system was discussed by Brinch-
Hansen [1970]. Schlichting and Schneider [1982] discussed asynchronous
message-passing primitives. The IPC facility implemented at the user level
was described by Bershad et al. [1990].

Details of interprocess communication in UNIX systems were presented
by Gray [1997]. Barrera [1991] and Vahalia [1996] described interprocess
communication in the Mach system. Solomon and Russinovich [2000] and
Stevens [1999] outlined interprocess communication in Windows 2000 and
UNIX respectively.

The implementation of RPCs was discussed by Birrell and Nelson [1984]. A
design of a reliable RPC mechanism was described by Shrivastava and Panzieri
[1982], and Tay and Ananda [1990] presented a survey of RPCs. Stankovic
[1982] and Staunstrup [1982] discussed procedure calls versus message-passing
communication. Grosse [2002] discussed RMI in significant detail. Calvert and
Donahoo [2001] provided coverage of socket programming in Java.

CHAPTER

The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating

. Systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APIs for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and how it affects the design of operating systems. Finally, we
explore how the Windows XP and Linux operating systems support threads at
the kernel level.

i ay
Sy

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program
counter, a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open files and signals. A traditional (or heavyweight) process
has a single thread of control. If a process has multiple threads of control, it
can perform more than one task at a time. Figure 4.1 illustrates the difference
between a traditional single-threaded process and a multithreaded process.

411 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A web browser might have one thread display images or
text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread
for responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background.

In certain situations, a single application may be required to perform
several similar tasks. For example, a web server accepts client requests for
web pages, images, sound, and so forth. A busy web server may have several
(perhaps thousands) of clients concurrently accessing it. If the web server ran
as a traditional single-threaded process, it would be able to service only one

123

124

Chapter 4

] code Jl data H files l data fiIesJ

iregistersl registers“registeril
stack ! stack H_stackJ

thread —— - «+— thread

single-threaded process muftithreaded process

Figure 4.1 Single-threaded and multithreaded processes.

client at a time. The amount of time that a client might have to wait for its
request to be serviced could be enormous.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, as was shown in the previous chapter. If the new process
will perform the same tasks as the existing process, why incur ali that overhead?
It is generally more efficient to use one process that contains multiple threads.
This approach would multithread the web-server process. The server would
create a separate thread that would listen for client requests; when a request was
made, rather than creating another process, the server would create another
thread to service the request.

Threads also play a vital role in remote procedure call (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providifig a
communication mechanism similar to ordinary function or prékedure calls.
Typically, RPC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests. Java’s RMI systems work similarly.

Finally, many operating system kernels are now multithreaded; several
threads operate in the kernel, and each thread performs a specific task, such
as managing devices or interrupt handling. For example, Solaris creates a set
of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

4.2 s 125

Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsivencss to the us}r_. For
instance, a multithreaded web browser could stil] allow user intergbtion
in one thread while an image was being loaded in another thread,

Resource sharing. By default, threads share the memory and the
resources of the process to which they belong. The benefit of sharing
code and data is that it allows an application to have several different
threads of activity within the same address space.

Economy. Q\l\!loca ting memory and resources for process creation is costly.
Because threads share resoutces of the process to which they belong, it
is more economical to create and context-switch threads, Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
[nSolaris, for example, creating a process is about thirty times slower than
is creating a thread, and context switching is about five times slower.

Utilization of multiprocessor architectures. The benefits of multithread-
ing can be greatly increased in a multiprocessor architecture, where
threads may be running in parallel on different processors. A single-
threaded process can only run on one CPU, no matter how many are
available. Multithreading on a multi-CPU machine increases concurrency.

4.2/'

Our discussion so far has treated threads in a generic sense. However, support
tor threads may be provided either at the user level, tor user threads, or by the
kernel, for kernel] threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating svstem. Virtually all contemporary
operating systems—including Windows X, Linux, Mac M5 X, Solaris, and
Trub4 UNIX (formerly Digital UNIX)-—support kernel threads,

Ultimately, there must exist a relationship between user threads and kernel
threads. In this section, we look at three common ways of establishing this
relationship.

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.2) maps many user-level thr;ads to one
kernel thread. Thread management is done by the thread library in user
space, su it is efficient; but the entire process will block if a thread makes a
blocking system call. Also, because on ly one thread can access the kernel at a
time, multiple threads are unable to run in parallel on multiprocessors. Green
threads—a thread library available for Solaris—uses this model, as does GNU
Portable Threads.

4.2.2 One-to-One Model

The one-to-one model (Figure 1.3) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another

126

Chapter 4

«— user thread

-\\k +—— kernel thread

Figure 4.2 Many-to-one model.

thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems—including Windows 95, 98, NT, 2000, and XP—
implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.4) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine {an
application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to
create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application {and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: Developers can create as many user

«+—— user thread

< k/i) (lj) (\k,\) (5 «—— kernel thread

Figure 4.3 One-to-one model.

4.3

4.3 127

+—— user thread

-

7|;\ —k | thread
{ ermel threa
AN

Figure 4.4 Many-to-many model.

threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many model still multiplexes many
user-level threads to a smatler or equal number of kerne] threads but also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to as the tve-level model (Figure 4.5), is supported by operating systems
such as IRIX, HP-UX, and Trué4 UNIX. The Solatis operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

A thread library provides the programmer an API for creating and managing
threads. There are two primary ways of implementing a thread library. The first
approach is to provide a library entirely in user space with no kernel support.

+— user thread

TN
{ k } +—kernelthread

Figure 4.5 Two-level model.

128

Chapter 4

All code and data structures for the library exist in user space. This means that
invoking a function in the library results in a local function call in user space
and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating systerm. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the POSIX standard, may be
provided as either a user- or kernel-level library. The Win32 thread library is a
kernel-level library available on Windows systems. The Java thread API allows
thread creation and management directly in Java programs. However, because
in most instances the 'VM is running on top of a host operating system, the Java
thread APl is typically implemented using a thread library available on the
host system. This means that on Windows systems, fava threads are typically
implemented using the Win32 API; UNIX and Linux systems often use Pthreads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi-
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

N
SUM = Z i
i=0

For example, if N were 5, this function would represent the summation from 0
to 5, which is 15. Each of the three programs will be run with the upper bounds
of the summation entered on the command line; thus, if the user enters 8, the
summation of the integer values from 0 to 8 will be output.

4.3.1 Pthreads

Pthreads refers to the POSIX standard (JEEF 1003.1c¢} defining an API for thread
creation and synchronization. This is a specification for thread behavior, not an
imiplementation. Operating system designers may implement the specification in
any way thev wish. Numerous systems implement the Pthreads specification,
including Solaris, Linux, MacOS X, and Truéd UNIX. Shareware implementations
are available in the public domain for the various Windows operating systems
as well.

The C program shown in Figure 4.6 demonstrates the basic Pthreads APl for
constructing a multithreaded program that calculates the summation of a non-
negative integer in a separate thread. In a Pthreads program, separate threads
begin execution in a specified function. In Figure 4.6, this is the runner ()
function. When this program begins, a single thread of control begins in
main{). After some initialization, main() creates a second thread that begins
control in the runner () function. Both threads share the global data sum.

Let's look more closely at this program. All Pthreads programs must
include the pthread.h header file. The statement pthread.t tid declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling inforniation. The pthread attr .t attr
declaration represents the attributes for the thread. We set the attributes in

4.3 129
!, #include <pthread.h> f”? _
¥ ¥include <stdio.hs> ‘v_f }

j*'iht sum; /* this data is shared by the thread({s) */
void *runner (void *param); /* the thread */

int main{int argc, char *argv[])

{
pthread t tid; /* the thread identifier =*/
pthreadattr.t attr; /* set of thread attributes */

if {arge 1= 2} |
fprintf(stderr, "usage: a.out <integer value>\n");
return -1;

}

if (ateifargvIl]) < 0) {
fprintf (stderr, "%d must be »>= g\n",atoi (argv[1]}};
return -1;

}

/* get the default attributes */

pthread attr.init (gattr};

/* create the thread */
pthreadﬁreate(&tid,&attr,runner,argv[l]);
/* wait for the thread to exit */

pthread. join(tid, NULL) ;

printf ("sum = %d\n", sum) ;

}

/* The thread will begin contrel in this function */
void *runner (void *param)
{

int i, upper = atoi (param);

sum = Q;

for (i = 1; 1 <= upper; i++)
sum += 1;

pthread.exit (Q) ;

}

Figure 4.6 Multithreaded C program using the Pthreads API.

the function call pthread.attr_init(&attr). Because we did not explicitly
set any attributes, we use the default attributes provided. (In Chapter 5, we
will discuss some of the scheduling attributes provided by the Pthreads APL) A
separate thread is created with the pthread _create{) function call. In addition
to passing the thread identifier and the attributes for the thread, we also pass
the name of the function where the new thread will begin execution—in this

130

Chapter 4

case, the runner{) function. Last, we pass the integer parameter that was
provided on the command line, argv [1].

At this point, the program has two threads: the initial (or parent) thread
in main{) and the summation (or child} thread performing the summation
operation in the runner() function. After creating the summation thread,
the parent thread will wait for it to complete by calling the pthread_join()
function. The summation thread will complete when it calls the function
pthread exit (). Once the summation thread has returned, the parent thread
will output the value of the shared data sum.

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is similar to
the Pthreads technique in several ways. We illustrate the Win32 thread APl in
the C program shown in Figure 4.7. Notice that we must include the windows . h
header file when using the Win32 APL

Just as in the Pthreads version shown in Figure 4.6, data shared by the
separate threads—in this case, Sum—are declared globally (the DWORD data
type is an unsigned 32-bit integer. We also define the Summation() function
that is to be performed in a separate thread. This function is passed a pointer to
a void, which Win32 defines as LPVOID. The thread performing this function
sets the global data Sum to the value of the summation from 0 to the parameter
passed to Summation().

Threads are created in the Win32 APi using the CreateThread () function
and—just as in Pthreads—a set of attributes for the thread is passed to this
function. These attributes include security information, the size of the stack,
and a flag that can be set to indicate if the thread is to start in a suspended
state. Tn this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it eligible
to be run by the CPU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sum, as
the value is set by the summation thread. Recall that the Pthread program
(Figure 4.6) had the parent thread wait for the summation thread using the
pthread join() statement. We perform the equivalent of this in the Win32 API
using the WaitForSingleObject () function, which causes the creating thread
to block until the summation thread has exited. (We will cover synchronization
objects in more detail in Chapter 6.)

4.3.3 Java Threads

Threads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single thread
of control—even a simple Java program consisting of only a main() method
runs as a single thread in the JVM.

There are two techniques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run () method. An alternative—and more commonly used —
technique is to dafine a class that implements the Runnable interface. The
Runnable interface is defined as follows:

4.3 e 131

#include <windows.h>

#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */
/* the thread runs in this separate function */

DWORD WINAPI Summation (LBVOID Param)
DWORD Upper = * (DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += i;
return 0;

}

int main{int arge, char *argv([])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
/* perfcrm some basic error checking */
if {argc != 2} |
fprintf (stderr, "An integer parameter i=s requiredin"}
return -1;
}
Param = atoi({argv[1]);
if (Param < 0) {
fprintf (stderr, "An integer »= (0 is requiredin");
return -1;

}

// create the thread
ThreadHandle = CreateThread!
NULL, // default security attributes
o, // default stack size
Summation, // thread function
&Param, // parameter to thread functicn
0, // default creation flags
&ThreadId); // returns the thread identifier

if (ThreadHandle != NULL) {
// now wait for the thread to finish

WaitForS8ingleObject (ThreadHandle, INFINITE) ;

// close the thread handle
CloseHandle {ThreadHandle) ;

printf ("sum = %d\n", Sum) ;

}

Figure 4.7 Multithreaded C program using the Win32 API.

132

4.4

Chapter 4

public interface Runnable

{
}

When a class implements Runnable, it must define a run () method. The code
implementing the run () method is what runs as a separate thread.

Figure 4.8 shows the Java version of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating
an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not specifically create the new thread; rather,
it is the start() method that actually creates the new thread. Calling the
start () method for the new object does two things:

public abstract void run();

1t allocates memory and initializes a new thread in the JVM.

It calls the run{) method, making the thread eligible to be run by the
JVM. (Note that we never call the run () method directly. Rather, we call
the start () method, and it calls the run{) method on our behalf.)

When the summation program runs, two threads are created by the JVM.
The first is the parent thread, which starts execution in the main{) method.
The second thread is created when the start () method on the Thread object
is invoked. This child thread begins execution in the run{) method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run () method.

Sharing of data between threads occurs easily in Win32 and Pthreads, as
shared data are simply declared globally. As a pure object-oriented language,
Java has no such notion of global data; if two or more threads are to share
data in a Java program, the sharing occurs by passing reference to the shared
object to the appropriate threads. In the Java program shown in Figure 4.8, the
main thread and the summation thread share the the object instance of the Sum
class. This shared object is referenced through the appropriate getSum() and
setSun () methods. (You might wonder why we don't use an Integer object
rather than designing a new sum class. The reason is that the Integer class is
immutable—that is, once its value is set, it cannot change.)

Recall that the parent threads in the Pthreads and Win32 libraries use
pthread join() and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides similar functionality. (Notice that join(} can throw an
InterruptedException, which we choose to ignore.)

In this section, we discuss some of the issues to consider with multithreaded
programs.

4.4 : 133

class 3um

{

private int sum;

public int getSum() {
return sum;

h
3

public veid setSum{int sum) {
this.sum = sum;

1
i

class Summation implements Runnable
private int upper;
private Sum sumValue; .

public Summation{int upper, Sum sumValue) {
this.upper = upper;
thig.sumValue = sumValue;

)

public void run() {
int sum = 0;
for {(int i = 0; 1 <= upper; i++}
sum += i;
sumvValue.setSum(sum) ;
)
}

public class Driver
{
public static veoid main(Stringf{] args) |
if {args.length > 0) {
if (Integer.parselnt(args[0]} < 0}
System.err.printlniargs[0] + "™ must be »= 0.");
else {
// create the cbject to be shared
Sum sumObject = new Sumf{);
int upper = Integer.parselnt(args[0]};
Thread thrd = new Thread{new Summaticn{upper, sumObject)};
thrd.start () ;
try {
thrd.join(};
System.out.println
{("The sum of "+upper+" is "+sumObject.getSum()};
} catch (InterruptedException ie) { }
1
}

else
System.err.println("Usage: Summation <integer values"}; }

Figure 4.8 Java program for the summation of a non-negative integer.

134

Chapter 4 R

4.41 The fork() and exec() System Calls

In Chapter 3, we described how the fork() system call is used to create a
separate, duplicate process. The semantics of the fork() and exec () system
calls change in a multithreaded program.

If one thread in a program calls fork(), does the new process duplicate
all threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork(), one that duplicates all threads and
another that duplicates only the thread that invoked the fork() system call.

The exec() systemn call typically works in the same way as described
in Chapter 3. That is, if a thread invokes the exec() system call, the program
specified in the parameter to exec () will replace the entire process—including
all threads.

Which of the two versions of fork(} to use depends on the application.
If exec{) is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec (J will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process does not call exec () after forking, the separate
process should duplicate all threads.

4.4.2 Cancellation

Thread cancellation is the task of terminating a thread before it has completed.
For example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on a web browser
that stops a web page from loading any further. Often, a web page is loaded
using several threads——each image is loaded in a separate thread. When a
user presses the stop button on the browser, all threads loading the page are
canceled.

A thread that is to be canceled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

Asynchronous cancellation. One thread immediately terminates the
target thread.

Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fasnion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim all resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource.

With deferred cancellation, in contrast, one thread indicates that a target
thread is to be canceled, but cancellation oecurs only after the target thread has
checked a flag to determine if it should be canceled or not. This allows a thread

44 L o 135

to check whether it should be canceled at a point when it can be canceled safely.
Pthreads refers to such points as cancellation points.

4.4.3 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

A signal is generated by the occurrence of a particular event.
A generated signal is delivered to a process.

Once delivered, the signal must be handled.

Examples of synchronous signals include illegal memory access and

\{ division by 0. If a running program performs either of these actions, a signal

p\F\ is generated. Synchronous signals are delivered to the same process that

%~ performed the operation that caused the signal (that is the reason they are

considered synchronous).

{ When a signal is generated by an event external to a running process, that

. .l\l process receives the signal asynchronously. Examples of such signals include

terminating a process with specific keystrokes (such as <control><C>) and

having a timer expire. Typically, an asynchronous signal is sent to another
process.

g Every signal may be handled by one of two possible handlers:
>

S

A default signal handler

A user-defined signal handler

Every signal has a default signal handler that is run by the kernel when
handling that signal. This default action can be overridden by a user-defined
signal handler that is called to handle the signal. Signals may be handled in
different ways. Some signals (such as changing the size of a window) may
simply be ignored; others (such as an illegal memory access) may be handled
by terminating the program.

Handling signals in single-threaded programs is straightforward; signals
are always delivered to a process. However, delivering signals is more
complicated in muttithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In general, the following options exist:

Deliver the signal to the thread to which the signal applies.
Deliver the signal to every thread in the process. ’
Deliver the signal to certain threads in the process.

Assign a specific thread to receive all signals for the process.

136

Chapterd - =

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process {<control> <C>, for example)—should be
sent to all threads.

Most multithreaded versions of UNIX allow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an asyn-
chronous signal may be delivered only to those threads that are not blocking
it. However, because signals need to be handled only once, a signal is typically
delivered only to the first thread found that is not blocking it. The standard
UNIX function for delivering a signal is kill(aid_t aid, int signal);here,
we specify the process (aid) to which a particular signal is to be delivered.
However, POSIX Pthreads also provides the pthread kill(pthread t tid,
int signal) function, which allows a signal to be delivered to a specified
thread (tid.)

Although Windows does not explicitly provide support for signals, they
can be emulated using asynchronous procedure calls (APCs). The APC facility
allows a user thread to specify a function that is to be called when the user
thread receives notification of a particular event. As indicated by its name,
an APC is roughly equivalent to an asynchronous signal in UNIX. However,
whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the APC facility is more straightforward, as an APC is delivered
to a particular thread rather-than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first concerns the amount of time required to create the thread prior to
servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: If we
allow all concurrent requests to be serviced in a new thread, we have not placed
a bound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU time or memory. One
solution to this issue is to use a thread pool.

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a request, it awakens a thread from this pool--if one
is available-—and passes it the request to service. Once the thread completes
its service, it returns to the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

Servicing a request with an existing thread is usually faster than waiting
to create a thread.
A thread pool limits the number of threads that exist at any one point.

This is particularly important on systems that cannot support a large
number of concurrent threads.

44 - Lo e 137

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dyramically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool—thereby consuming less memory—when the load
on the system is low.

The Win32 APl provides several functions related to thread pools. Using
the thread pool API is similar to creating a thread with the Thread Create()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

DWORD WINAPI PoolFunction (AVOID Param) |
/**
* this function runs as a separate thread.
**/

A pointer to PoclFunction() is passed to one of the functions in the thread
pool APl and a thread from the pool executes this function. One such member
in the thread pool API is the QueueUserWorkItem() function, which is passed
three parameters:

LPTHREAD_START_ROUTINE Function—a pointer to the function that is to
run as a separate thread

PVOID Param—the parameter passed to Function

ULONG Flags—flags indicating how the thread pool is to create and
manage execution of the thread

An example of an invocation is:
QueueUserWorkItem (&PoociFunction, NULL, 0);

This causes a thread from the thread pool to invoke PeolFunction () on behatf
of the programmer. Tn this instance, we pass no parameters to PoolFunc-
tion(). Because we specify 0 as a flag, we provide the thread pool with no
special instructions for thread creation.

Other members in the Win32 thread pool AT include utilities that invoke
functions at periodic intervals or when an asynchronous 1/0 request completes.
The java.util.concurrent package in Java 1.5 provides a thread pool utility
as well.

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming,
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction may be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific

138

Chapter 4

e yser thread

~«— lightweight process

k\-— kernel thread

Figure 4.9 Lightweight process {LWP)

data. Most thread libraries—including Win32 and Pthreads---provide some
form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A final issue to be considered with multithreaded programs concerns com-
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or two-level model
place an intermediate data structure between the user and kernel threads. This
data structure—typically known as a lightweight process, or LwP-—is shownin
Figure 4.9, To the user-thread library, the LWP appears to be a virtual processor on
which the application can schedule a user thread to run. Each LWP is attached
to a kernel thread, and it is kernel threads that the operating system schedules
to run on physical processors. If a kernel thread blocks (such as while waiting
for an 1/0 operation to complete), the LW blocks as well. Up the chain, the
user-level thread attached to the LWP also blocks.

Anapplication may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only
one thread can run at once, so one LWP s sufficient. An application that is 1/0-
intensive may require multiple EWDs to execute, however. Typically, ant LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for 1/0 completion in the kernel. If a process has
only four LWPs, then the fifth request must wait for one of the LWPs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel 1s known as scheduler activation. It works as follows: The kernel
provides an application with a set of virtual processors (LwPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upecall. Upcalls are handled by the thread library
with an upcall handler, and upcall handlers must run on a virtual processor. -
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing

4.5

4.5 139

it that a thread is about to block and identifying the specific thread. The kernel
then allocates a new virtual processor to the application. The appiication runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the rew virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informing it that the previously blocked thread is now eligible to run.
The upcall handler for this event also requires a virtual processor, and the kernel
may allocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the unblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

[n this section, we explore how threads are implemented in Windows XP and
Linux systems.

4.5.1 Windows XP Threads

Windows XP implements the Win32 APL The Win32 APl is the primary AP for
the family of Microsoft operating systems (Windows 95, 98, NT, 2000, and x1°).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systemns.

A Windows XP application runs as a separate process, and each process
may contain ene or more threads. The Win32 APT for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each userlevel thread maps to an associated kernel
thread. However, Windows XP also provides support for a fiber library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

The general components of a thread include:

A thread 1D uniquely identifying the thread
A register set representing the status of the processor

A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

A private storage area used by various run-time libraries ard dynamic tink
libraries (DLLs} :

The register set, stacks, and private storage area are known as the context
of the thread. The primary data structures of a thread include:

ETHREAD—executive thread block
KTHREAD—kernel thread block

TEB—thread environment biock

140

Chapter 4 ; v

ETHREAD

thread start
address.

pointer to
parant process KTHREAD

A\

!samei e TEB
> thread identifier

. . .- user

. stack

kernel space user space

Figure 4.10 Data structures of a Windows XP thread.

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD inrludes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREALY and the KTHREAD exist entirely in kernel space; this means
that only the kernel can access them. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifier, a user-mode stack, and an array for thread-
specific data (which Windows X¥* terms thread-local storage). The structure of
a Windows XD thread is illustrated in Figure 4.10.

4.5.2 Linux Threads

Linux provides the fork(} system call with the fraditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
to create threads using the clone() system call. However, Linux does not
distinguish between processes and threads. In fact, Linux generally uses the
term fask—rather than process or thread—when referring to a flow of control
within a program. When clone () is invoked, it is passed a set of flags, which

4.6

4.6 141

determine how much sharing is to take place between the parent and child
tasks. Some of these flags are listed below:

flag meaning T
CLONE_FS File-system information is shared.
CLONE_VM The same memory space is shared. 1

_CLONEi:’SIGHAND Signal handlers are shared.
CLONE_FTLES | The set of open files is shared.___i

For example, if clone() is passed the flags CLONE FS, CLONE_VM,
CLONE_SIGHAND, and CLONE FILES, the parent and child tasks will share the
same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files.
Using clome () in this fashion is equivalent to creating a thread as described
ins this chapter, since the parent task shares most of jts resources with its child
task. However, if none of these flags are set when clone () is invoked, no
sharing takes place, resulting in functionality similar to that provided by the
fork{() system call.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure {specifically,
struct task struct) exists for cach task in the systemn. This data structure,
instead of storing data for the task, contains pointers (o other data structures
where these data are stored —for example, data structures that represent the list
of open files, signal-handling information, and virtuat memory. When fork ()
1s invoked, a new task is created, along with a copy of all the associated data
structures of the parent process. A new task is also created when the clone ()
system call is made. However, rather than copying all data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone(}.

A thread is a flow of control within a process. A muitithreaded process
contains several different flows of control within the same address space.
The benefits of multithreading include increased responsiveness to the user,
resource sharing within the process, economy, and the ability to take advantage
of multiprocessor architectures.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kerncl supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kernel threads, as no intervention from the kernel is required.
Three different types of models relate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one modet
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal number of kemnel
threads.

142

Chapter 4

Most madern operating systems provide kernel support for threads; among
these arc Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an APl for
creating and managing threads. Three primary thread libraries are in common
use: POSIX Pthreads, Win32 threads for Windows systems, and Java threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the fork() and exec() system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

4.1

4.2

4.3

4.4

4.5

4.6

Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

Describe the actions taken by a thread library to context switch between
user-level threads.

Which of the following components of program state are shared across
threads in a multithreaded process?

o

Register values

=

Heap memory
Global variables

d. Stack memory

Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system?

The program shown in Figure 4.11 uses the Pthreads APL. What would
be cutput from the program at LINE C and LINE P?

Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system, Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal
to the number of processors.

¢. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of
user-level threads.

4.7

4.8

143

#include <pthread.h>
#include <stdioc.h=

int value = 0;
vold *runner {void *param) ; /* the thread »/

int main(int argc, char *argv[])
{

int pid;

pthread.t tid;

pthread.attr t attr;

pid = fork(};

if {pid == 0) {/* child process */
pthread attr_ init{sattr);
pthread create (&tid, sattr, runner, NULL) ;
pthread_ join(tid,NULL) ;
printf ("CHILD: value = ¥d",value); /* LINE C =*/
}
else if (pid » 0) {/* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /* LINE P */
}
}

void *runner(void *param} |
value = 5;
pthread.exit (0} ;

}

Figure 4,11 C program for question 4.5,

Modify the socket-based date server (Figure 3.18) in Chapter 3 so that
the server services each client request in a separate thread.

The Fibonacci sequence is the series of numbers 0. 1. 1,2,3,5.8. ...
Formally, it can be expressed as:

fI.bU =0
fibp =1
fibti = fibnfl + f.!'b,,,z

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should
work as follows: The user will enter on the command line the number
of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is
probably the most convenient data structure). When the thread finishes

144

Chapter 4

execution, the parent thread will output the sequence generated by
the child thread. Because the parent thread cannot begin outputting
the Fibonacci sequence until the child thread finishes, this will require
having the parent thread wait for the child thread to finish, using the
techniques described in Section 4.3.

Given two matrices Aand B, where Ais a matrix with M rows and K coltmns
and matrix B contains K rows and N columns, the matrix product of Aand B
is matrix C, where € contains M rows and N columns. The entry in matrix C
for row i column | (C; ;}is the sum of the products of the elements for row i in
matrix A and column | in matrix B. That is,

K
CL;::E:J%JIX ij
n=1

For example, if A were a 3-by-2 matrix and B were a 2-by-3 matrix, element
C31 would be the sum of Ay x By, and Az x Bo.

For this project, calculate each element C; ; in a separate worker thread. This
will involve creating M x N worker threads. The main—or parent—thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has access to A, B, and C.

Matrices A and B can be initialized statically, as shown below:

#define M 3
#define K 2
#define N 3

int A [M](K1 =1 {
int B [K][N] {
int C [MI [W1;

Alternatively, they can be populated by reading in values from a file.
Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row i and column | that it is to use in calculating the matrix product.
This requires passing two parameters to each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a struct. The members
of this structure are i and j, and the structure appears as follows:

/% structure for passing data to threads */
struct v

int i; /* row */
int j; /* column */

}i

145

Both the Pthreads and Win32 programs wiil create the worker threads
using a strategy similar to that shown below:

/* We have to create M * N worker threads * !

for 11 = Q; 1 < M, i++)
for {3 = 0; 9 < N; J++ } |
struct v *data = f{struct v *) malloco(sizeof (struct v
data--i = i;

data-»j = j;
/* Now create bthe thread pasging it dara Aas a parameter */

The data pointer will be passed to either the pthread create() (Pthreads)
tunction or the CreateThread () (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to create
and initialize the matrices A, B, and C. This main thread will then create the
worker threads, passing the three matrices - -along with row i and column i—
to the constructor for each worker. Thus, the outline of a worker thread appears
as follows:

public class WorkerThread implements Kurnable

private int row;
private int col;

private int[]1([] A;
private int{][] B;
private int[} [] <;

public WorkerThread{int row, int col, int[]!] A,
int {101 B, int[i[] C; {
this.row = row;
this.col = col;

thig.A = A;
tnis.B = B;
thig.l = C;

piblic void run() |
/* calculate the matrix product :n Cilrow] [ccl] */

Waiting for Threads to Complete

Once all worker threads have completed, the main thread wil] output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Several different strategies can be used to enable a thread to wait

146

Chapter 4
#define NUM_THREADS 10

/* an arrav of threads to be joined upon */
pthread.t workers [NUM_THREADS] ;

for {(int i = 0; 1 <« NUM._THREADS; 1++)}
pthread join{workers([i], NULL];

Figure 4.12 Phtread code for joining ten threads.

for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the WaitForSingleObject() function, whereas Pthreads
and Java use pthread_join(} and join(), respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the WaitForSingleObject () function, which
is used to wait for a single thread to finish. However, the Win32 API also
provides the WaitForMultipleObjects() function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjects() is
passed four parameters:

The number of objects to wait for

A pointer to the array of objects

A flag indicating if all objects have been signaled
A timeout duration (or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for all its child threads to complete with the statement:

WaitForMultipleObjects(N, THandles, TRUE, INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Java’'s join() is to enclose the join operation within a
simple for leop. For example, you could join on ten threads using the 'thread
code depicted in Figure 4.12. The equivalent code using Java threads is shown
in Figure 4.13.

final static int NUM.THREADS = 1G;

/* an array of threads to be joined upcn */
Thread !} workers = new Thread [NUM_THREADS] ;

for {(int i = 0; i1 < NUM.THREADS; i++) {

try |
workers[i] .join{);
lcatch {InterruptedException ie) {}

Figure 4.13 Java code for joining ten threads.

147

Thread performance issues were discussed by Anderson et al. {1989, who
continued their work in Anderson et al. [1991] by evaluating the performance
of user-level threads with kernel support. Bershad et al. [1990] describe
combining threads with RPC. Engelschall [2000] discusses a technique for
supporting user-level threads. An analysis of an optimal thread-pool size can
be found in Ling et al. [2000]. Scheduler activations were first presented in
Anderson et al. [1991], and Williams [2002] discusses scheduler activations in
the NetBSD system. Other mechanisms by which the user-level thread library
and the kernel cooperate with each other are discussed in Marsh et al. [1991],
Govindan and Anderson [1991], Draves ct al. [1991], and Black [1990]. Zabatta
and Young {1998] compare Windows NT and Solaris threads on a symmetric
multiprocessor. Pinilla and Gill {2003] compare Java thread performance on
Linux, Windows, and Solaris.

Vahalia {1996] covers threading in several versions of UNIX. Mauro and
McDougall [2001] describe recent developments in thread ing the Solaris kernel.
Solomon and Russinovich [2000] discuss threading in Windows 2000. Bovet
and Cesati [2002] explain how Linux handles threacting.

Information on Pthreads programming is given in Lewis and Berg [1998]
and Butenhof [1997]. Information on threads programming in Solaris can be
found in Sun Microsystems [1995]. Qaks and Wong [1999], Lewis and Berg
[2000], and Holub [2000] discuss multithreading in Java. Beveridge and Wicner
[1997] and Cohen and Woodring [1997] describe multithreading using Win32.

